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SUMMARY

six-nort network analvzer is

shown to be equivalent to the determitiation of

four Stokes vectors. Analyzer performance can then

be visualized in terms of the Stokes vector

representing the unknown, relative to those
representing the analyzer.

INTRODUCTION

Since Engen and Hoer introduced the six-port

analyzer substantial literature has developed

dealing with different six-port circuit configu-

rations, calibration of the six-port, and measure-

ment error analysis [1-6]. This paper formulates

the connection between power meter indication and

the value of the unknown reflection coefficient (or

other complex ratio) in terms of Stokes vectors. In

particular it is shown that each power meter

indication can be expressed in terms of the scalar

product of one of four Stokes vectors charac-

teristic of six-port and a Stokes vector describing

the unknown. The connection between Stokes

vectors, the Poincare sphere and reflection

coefficient provides an attractive geometrical

interpretation which can provide valuable insight

into the six-port calibration and measurement

processes.

THEORY

A six-port analysis, with ports designated as

shown in Fig. 1, will be represented by its

scattering matrix S = [Smn]. The scattering matrix

is partitioned, separating out the input port (1)

and the measurement port (2) from the power meter

ports (3), (4), (5) and (6).
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FIGUREI. SIX-PORT MEASUREMENT
SYSTEM
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The power detectors mey be mismatched with

reflection coefficients Qn. Writing the diagonal

matrix Q = [Qn dnml, we have

as = Q 98 (2)

This relation may be substituted in (1) to obtain

-1
~~ = (1 - S~8Q) .s~aaaa (3a)

‘~~al+~Ba2 ( 3b)

The diagonal elements of the matrbix ~B ~$ are
the (average) power quantities Pn = bn bn*,

incident on the detectors, n M 3, 4, 5, 6. In

matrix form

A

[1[

:1 lA312 A3B3*
‘3A3*

A

~=
:2 . 14441’ A4B4* B4J34*

:3 IA512 A5B5*
‘5B5*

‘4 lA61’ A6B6*
‘6B6*

Notice that the rows of C have the

as column vector ~.

We now introduce the Stokes

the linear transformation T.
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The rows of the square matrix 2CT, _5 ~o aPPIY these results directly to the
six-port reflection network analyzer, it is only

neceseary to replace the conventional scattering

matrix in (1) with another one containing the same

information and eaaily derivable from the orfginal

matrix. In particular, we set
(7)

also have the form of Stokes vectors. For example, 9

[1
b2 ,

%
and Hbl

a2
%“al

(13)

$30 = lB~12 + IA312, S31 = 2Re B3A3* (8)

Then

’32 = 2*m B3A3* ‘ $33 = IB31Z - IA312; ‘tc”

Writing the transpose of ~,

.ga
[ 1‘o ‘1 a2 ‘3

(9)

(14a)

( 14b)kl”k *Mwe can express the incident power quantities as the

product of Stokes vectors in accordance with (6).

It will be recalled that the 4-dimensional

Stokes vectors may be given a geometrical

interpretation in 3-dimensional epace (Poincare

sphere) [7,11]. The ordinary 3-dimensional vector

with cartesian components (s1, s2, s3)is written.

where, for example, from (1) we find

[Nua NUB] 9

[

’21 ’22 : ’23 ’24 ’25 ’26 1(15)

01 10 0 0 0
+. A

4?-s
1

‘+sx+s~Y 32, (lo)

The desired

equation is

non-conventional “scattering matrix”

(11) therefore

Therefore, the product of Stokes vectors (4)

may be visualized in terms of the scalar product of

ordinary vectors. Thus

(12a) The required inverse

-s so + Itnl 121 Cos 2Yn
nO

(12b) b’ ;:r=k-’ -Na’tj ’17)
‘= Sno so + s s (WS 2V

nO O n
(12C)

evidently exiete provided only S21 # O, Employing

(16) and (2) to redefine the column 4-vectors in

(3b) [Aa replacing ga], we obtain

~B=&~ b2+~~ a2 (18)

We now proceed as before, paralleling equations (4)
through (12), to express Pn aa the product of

Stokes vectors. In particular, paralleling (5),

= 2 $noso (Cos Yn)’ (12d)

Stokes vector ~ is shown in a Poincare sphere in

Fig. 2.

FIGURE 2. POINCARESPHEREAND STOKES VECTOR S
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1001

1 + Irl’

2Re ~ 1(19)

21m ~

1- Irl’

In this equation we have inserted the re-

flection coefficient at port 2, a2 = I’ b2, dropping
the subscript 2 on r for convenience when no
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(20)

confusion with the matrix r defined in (22b)

arises. We will also find it convenient to denote

the Stokes vector

[1
1+lrlz

2Rer

~- 21ml’

1- lrit

keeping separate the amplitude factor lb212.

CALIBRATION

tie assume that five terminations [8] with

known reflection coefficients which meet a

restriction to be given shortly are available.

Power readings from the four power meters cor-

responding to each of the five known terminations

are noted, that is, we have five sets of readings

~(n) -
[P~) P~)P~) P~)], n=l,2, . . . . 5 (21)

(n)
~orresponding to five Stokes vectors ~ as in

(20). Defining the square 4 x 4 matrices

p= [p(l) p(’2) E(3) ?(4)]
.- (22a)

r= [r(l) r(2) ~
(3)

~
(4)1

(22b)

B= [lb~)lz Snm], n, m= 1, 2, 3, 4. (22C)

we may write, from equation (18), (19) and the

parallel of (7)

pa@’TrB, (23a)

.@’ T= pB-l r-l (23b)

wherein the diagonal elements of B are as yet

undetermined. The fifth aet of measurements now

determines the elesrents

equatians

of B from the four linear

~‘5)=+C1T~ ‘5)lb:5)12 =PB
-lr-~ ~(5)lb~5)12 (24)

in terms of the scale factor lb(~)12 which

we may set at an arbitrary positi$e magrrltude.

With B found, ~ C’ T can be computed from (23), and

the calibration is complete. The arbitrary scale

factor introduced into B, and inversely into C’ T,

cancels from (23a).

The reader may have remarked the absence of

the carat over the power quantities P. The carat

was employed to distinguish incident from total

power. In calibration (as opposed to computation
g~ms given circuit alements) we may lump any

mismatch of the detector into the six-port. Then

power absorbed by a meter can be set equal to the

incident power.

We now return to the promised restriction on

tha choice of the five I’(n). Clearly, the
inverse of r (22b) must exist by (23) and (24).

Thus we must ensure that

det r # o, (25)

i.e., the four ~~n) must be linearly independent.

If the en points of the corresponding four 3-space

$Vectors (n) are coplanar, then the four ~(n)are

linearly dependent [9]. We may reprea<nt re-
flection coefficients by normalized ~(n) on the

Poincare sphere. If they are linearly dependent,
the plane through their endpoints determines a

circle on this sphere. By stereographic pro-

jection, the same values of r(n) lie on a circle in

the complex reflection coefficient plane [9,12]. It

is therefore clear that any four reactive termi-

nations, which lie on a circle in i’ plane, will

always lead to linearly dependent r(n), and (as is

now well known) are therefore insufficient for

purposes of calibration.

mSUREMENT

In performing one measurement, we record the
readings of the four power meters in a column

vector P. Using the result of the calibration

(23) to~efine a matrix ~= 2 C’ ‘1

~ -S!, ~=5-lP — (26)

It w-ill be remembered ‘chat .9 contains t]le

arbitrarily set scale factor lb2(5~12. We may
always choose to “normalize” the compc,nents of ~.

In practice, this is best accomplished by leavi;g

the matrix .$ fixed, but dividing the elements of
both ~ and~ as found from (26) by $ (1’{) + r3). We

denote such normalized values by “~ amd “~. The
space vector part of ‘~,

“?= “rli+ “rzG+ “r3; , (27)

then defines a point on a Poincare sphere of radius

1 + Ir[z s ‘r. corresponding to the measured

reflection coefficient. As already mentioned,
points on the sphere

points on the complex

explicitly in terms of

Rer=!fOr’l, -Imr=

The measurement

corresponding clirectly to

reflection coefficient plane

the normalized “~, by

+ “r2 (28)

can readily be given a

geometrical interpretation on the Poincare sphere

(or by stereographic projection) on the complex
plane by means of equation (12). We recall that

the rows of S are Stokes vectors (7) and (8). The

directions of the space portions of these rows,s3,

s4, Stj, S6, determine axes in space. Circular
cones with vertex angles 2 % about these axes,

I
Yn = arccos “P

n
(29)

~

d A’no l.,
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cf. Eq.
circles.

(12) cut a Poincare

One such construction is

sphere in four

shown in Fig. 3.

S.

e!l
---,.-Pn = const

“’”2*) .7
n

FIGURE3. CONSTANT POWER CIRCLE ON
POINCARE SPHERE

These four circles will intersect at a point on the

sphere of appropriate radius “r. corresponding to

the measured r. It iS now evident that, in order
to yield a well defined intersection, the centers

of these circles should be widely spaced. Stokes
vectors corresponding to the six-port circuit

employed by Engen [3] are shown in Fig. 4. It will

be seen that they are very well spaced.

FIGURE 4. ENGEN’SCIRCUIT: STOKES VECTOR REPRESENTATION
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SIMPLE SIX-PORT CRITERIA

Based on the elements of the scattering matrix

(1) we may develop two simple (sufficient) criteria

which can serve to make a given six-port unsuitable

as an analyzer.

Consider utilization of a six-port with

matched power detectors, Qn = O. Then, in

accordance with (3a), the matrix C is determined by
the elements of SBU. Evidently, if C is eingular,
then the junction is unsuitable. It may be shown

thati C is singular when:

i) Any two rows of SBU are linearly dependent

ii) The two columns of s8cl are linearly
dependent

When these criteria are applied to three well-

known symmetrical lossless reciprocal six-ports:

1. Purcell’s junction

2. The Turnstile junction

3. The six-armed Star junction

it follows from symmetry analysis that none of

these junctions is suitable as a six-port analyser.

In the instance of the six-armed star junction this

conclusion is in agreement with Riblet [10].
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