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SUMMARY

Calibration of six-port network analyzer is
shown to be equivalent to the determination of
four Stokes vectors. Analyzer performance can then
be visualized in terms of the Stokes vector
representing the unknown, relative to those
representing the analyzer.

INTRODUCTION

Since Engen and Hoer introduced the six-port
analyzer substantial literature has developed
dealing with different six-port circuit configu~
rations, calibration of the six-port, and measure=~
ment error analysis {1-6}. This paper formulates
the connection between power meter indications and
the value of the unknown reflection coefficient (or
other complex ratio) in terms of Stokes vectors. In
particular it is shown that each power meter
indication can be expressed in terms of the scalar
product of one of four Stokes vectors charac-
teristic of six-port and a Stokes vector describing
the unknown. The connection between Stokes
vectors, the Poincare sphere and reflection
coefficient provides an attractive geometrical
interpretation which can provide valuable insight
into the six-port calibration and measurement
processes.

THEORY

A six~port analysis, with ports designated as
shown in Fig, 1, will be represented by its
scattering matrix S = [Sy,]. The scattering matrix
is partitioned, separating out the input port (1)
and the measurement port (2) from the power meter
ports (3), (4), (5) and (6).
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FIGURE 1. SIX-PORT MEASUREMENT
SYSTEM
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where
a 2
o al and a = 34 , etc,
2 a5
6
The power detectors may be mismatched with

reflection coefficients Q.
matrix Q = [Q, 8,,], we have

Writing the diagonal
ag = Q by (2)

This relation may be substituted in (1) to obtain

-1
bg = (1 - SgpQ)  Sgeaq (3a)
= Ag aj + Bg ay (3b)

The diagonal elements of the matrix bg §§ are
the (average) power quantities P, = b, b,¥%,

incident on the detectors, n = 3, 4, 5, 6. In
matrix form
S 2 * * 2 2
31 18517 AgB*  BaA*  [Bg)*} ta|
~ 2 * % 2
p = |Pof |11 AR BB (B 8 a,%
2 * * 2
Py tAgl®  AgB*  B.B*  [B] aya,¥
2 %* * 2 2
L tAgl® A BBF  {B{*] |la,l
=C 3 (4)

Notice that the rows of C have the same structure
as column vector 3.

We now introduce the Stokes vector g via
the linear transformation T.

2 2 4 2
|31l 1 0 0 1 lall + |a2|
~ *) *
2e aja,%| 3 01 3 0O 2Re a8, =T a
* - *
2,8y 0 1-3 0 2Im aa, (5
2 - 2 . 2
'azl 1 0 0-1 |azl |a1|
80 that
P-CTa (6)
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The rows of the square matrix 2CT, S,

S, S, S, 8. S,
0 1 2 3 =,
S0 S S %ol . |54

4
2cT = |0 AL A2 83

0 51 S5z Ss3 g
"'205'21"'22"5 5

6 6
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also have the form of Stokes vectors. For example,

2 2 - %
550 - |B3| + }Aal , 531 2Re 33A3 (8)
s - m B.A.% S, e {B_1% - JA.}12:
32 a1 373 ’ 33 l 3[ I 3' 3 ete.

Writing the transpose of g,
2= [”o 1 %2 s3] 2

we can express the incident power quantities as the
product of Stokes vectors in accordance with (6).

It will be recalled that the 4~dimensional
Stokes vectors may be given a geometrical
interpretation in 3-dimensional space (Poincare
sphere) [7,11]. The ordinary 3-dimensional vector
with cartesian components (s}, sy, s3)is written.

3 =8 X + sy ; + 8, z , (10)
22 2 2 2 2
jaj?2 = s + ) + 83 = 8 (11)

Therefore, the product of Stokes vectors (4)
may be visualized in terms of the scalar product of
ordinary vectors. Thus

- 3 3
2Pn =S5a= 5,8+ S (12a)

4 9
= 5;0 8g t IS;I {a} cos 2?n (12b)
- 5;0 sy * 5;030 cos ZTn (12¢)
= 2

2 5;080 (cos Vn) (124)

Stokes vector § is shown in a Poincare sphere in
Fig. 2.

FIGURE 2. POINCARE SPHERE AND STOKES VECTOR §

1o apply these results directly to the
six-port reflection network analyzer, it is only
necessary to replace the conventional scattering
matrix in (1) with another one containing the same
information and easily derivable from the original
matrix. In particular, we set

b b
x, " [32 ] , and Y, * [al] (13)
2 1
Then
}ﬁ; [Naa Nua} }h;
- (1l4a)
2gf |0 o] [28)
. - . " o
fa - [saa saB] ;u (14b)
| —8 | Ba B8 -8}

where, for example, from (1) we find

[Naa NaB] - SZl S22
0 1

S s S

23 S Sps

26 1s)
0 0 0 0

The desired non-conventional "scattering matrix"

equation is therefore

-1
xoz M&d M&s NG(Y, NNG 5&
bl = Is s 0 1 a (16)
g 8o 88 88 Zp

The required inverse

-1 -1 -1
[Naa Nas] - [Naa Moo Naﬂ] 17
4]

0 1BB IBB

evidently exists provided only S21 # 0. Employing
(16) and (2) to redefine the column 4~-vectors in
(3b) {x, replacing a,), we obtain

b =A' b

by =4 P+ B

8 a8, (18)
We now proceed as before, paralleling equations (4)

through (12), to express P, as the product of
Stokes vectors. In particular, paralleling (5),

I, 12
N 10 0-1 1+ (T2
L= 22%27 =3 1 1 50| Iby)2 [2Re T* | (19)
azbz* 0 1-3 0 2Im %
o, |2 1 0 01 1 - |ry
2

In this equation we have inserted the re-
flection coefficient at port 2, ay = T by, dropping
the subscript 2 on I' for convenience when no



confusion with the matrix T defined in (22b)
arises. We will also find it convenient to denote
the Stokes vector

1 + |T)2
2Re T

Pa 12Im T (20)
1 - |r?

keeping separate the amplitude factor lbzlz.

CALIBRATION

We assume that five terminations {8] with
known reflection coefficients which meet a
restriction to be given shortly are available.
Power readings from the four power meters cor-
responding to each of the five known terminations
are noted, that is, we have five sets of readings

S{n) (n) (n) (n)
P o IR B By

corresponding to five Stokes vectors [(n) as in

Pé“)}. a=1,2, ..., 5 (21)

(20). Defining the square 4 x 4 matrices
p = (D) 3D (3 &) (228)
P D @ 3 e, (228)
B = [8b§n)l2 6 .0y nom=1,2, 3, 64 (22¢)

we may write, from equation (18), (19) and the

parallel of (7)

P=4C"TT B, (23a)

1 -1

}'T=PB T (23b)

wherein the diagonal elements of B are as yet
undetermined. The fifth set of measurements now
determines the elements of B from the four linear
equations

2(5)" %cn T £(5)|b§5)‘2 = P B'lr"l E(S)'b§5)!z (24)

in terms of the scale factor |b(3)|2 which

we may set at an arbitrary positive magnitude.
With B found, $ C' T can be computed from (23), and
the calibration is complete. The arbitrary scale
factor introduced into B, and inversely into C’' T,
cancels from (23a).

The reader may have remarked the absence of
the carat over the power quantities P. The carat
was employed to distinguish incident from total
power. In calibration (as opposed to computation
from given circuit elements) we may lump any
mismatch of the detector into the six-port. Then
power absorbed by a meter can be set equal to the
incident power.
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We now return to the promised restriction on
the choice of the five I(n), Clearly, the
inverse of I' (22b) must exist by (23) and (24).
Thus we must ensure that

det I' # O, (25)
i.e., the four E(“) must be linearly independent.
If the end points of the corresponding four 3~space
vectors T'\M™/ are coplanar, then the four E(“ are
linearly dependent [9]. We may represent re-
flection coefficients by normalized Tin) on the
Poincare sphere. If they are linearly dependent,
the plane through their endpoints determines a
eircle on this sphere. By stereographic pro-
jection, the same values of ') lie on a circle in
the complex reflection coefficient plane [9,12]. It
is therefore clear that any four reactive termi-
nations, which lie on a circle in I plane, will
always lead to linearly dependent I'(n , and (as is
now well known) are therefore insufficient for
purposes of calibration.

MEASUREMENT

In performing one measurement, we record the
readings of the four power meters in a column
vector P. Using the result of the calibration
(23) to define a matrix S£=2¢C" 1

P-sL, I'=s1p (26)
It will be remembered that S contains the
arbitrarily set scale factor ib2(5)lz. We may

always choose to "normalize" the components of [.
In practice, this is best accomplished by leaving
the matrix § fixed, but dividing the elements of

both P and I as found from (26) by } (T, + F3). We
denote such normalized values by °P and °T. The
space vector part of °T,

o & o & op op o

Feorzs Iy + °Tz , (27

then defines a point on a Poincare sphere of radius
1 + |I'|? = °T, corresponding to the measured
reflection coefficient. As already mentioned,
points on the sphere corresponding directly to
points on the complex reflection coefficient plane
explicitly in terms of the mormalized °T, by
ReT =% °Ty, ~ImT = } °Iy (28)
The measurement can readily be given a

geometrical interpretation on the Poincare sphere

{or by stereographic projection) on the complex
plane by means of equation (12). We recall that

the rows of S are Stokes vectors (7) and (8). The

directions of the space portions of these rows, Sa,

54, 55, Sg, determine axes in space. Circular

cones with vertex angles 2 ¥n about these axes,

(29)

¥ = arccos
n




c.f. Eq.
circles.

(12) cut a Poincare sphere in four
One such construction is shown in Fig. 3.
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FIGURE 3. CONSTANT POWER CIRCLE ON
POINCARE SPHERE

These four circles will intersect at a point on the
sphere of appropriate radius °Fo corresponding to
the measured I'. It is now evident that, in order
to yield a well defined intersection, the centers
of these circles should be widely spaced. Stokes
vectors corresponding to the six-port circuit
employed by Engen {[3] are shown in Fig. 4. It will
be seen that they are very well spaced.

FIGURE 4. ENGEN’S CIRCUIT: STOKES VECTOR REPRESENTATION
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SIMPLE SIX~PORT CRITERIA

Based on the elements of the scattering matrix
(1) we may develop two simple (sufficient) criteria
which can serve to make a given six-port unsuitable
as an analyzer.

Consider utilization of a six-port with
matched power detectors, Q, = O. Then, in
accordance with (3a), the matrix € is determined by
the elements of Sgg. Evidently, if C is singular,
then the junction is unsuitable. It may be shown
that C is singular when:

i) Any two rows of Sgy are linearly dependent

ii) The two columns of Sgg are 1linearly
dependent

When these criteria are applied to three well-
known symmetrical lossless reciprocal six~ports:

1. Purcell’'s junction
2. The Turnstile junction
3. The six-armed Star junction
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it follows from symmetry analysis that none of
these junctions 1s suitable as a six-port analyzer.
In the instance of the six-armed star junction this
conclusion is in agreement with Riblet [10].
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